Experimental and theoretical behaviour of large scale loaded steel mesh reinforced concrete Ground-Supported slabs

نویسندگان

چکیده

Experimental and theoretical investigations were carried out to study the structural behaviour of loaded steel mesh reinforced concrete ground-supported 6.0 m × by 150 mm thick slabs. The aim was benchmark scientific theory with practice. Concentrated loading tests at slab centre; 300 mm, from both edges corners Finite element (FE) numerical modelling results predicted design values using technical guidance codes determined. Nonlinear under load captured FE modelling. All evaluated compared. experimental included centre edge loading. Other positions numerically compared guidance. Experimentally for loading, failure predominantly in punching shear a 417 kN. For circumferential radial cracks led bending peak value 369 A notable difference evident between obtained 51.0% higher central position 53.2% position.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behaviour of fibre reinforced concrete slabs

This paper presents a comparison of the properties of concrete slabs when two types of fibres are added. One specimen had no fibres and acted as a control specimen. The remaining four specimens had steel and polypropylene fibres added in the volumetric ratio of 0.5% and 1.0%. The dimensions of the slab specimens were 820×820×80 mm and were supported by four rollers at their edges. A displacemen...

متن کامل

Punching shear strength of steel fibre reinforced concrete slabs

The ultimate strength of reinforced concrete slabs is frequently governed by the punching shear capacity, which may be increased with addition of traditional fitments such as reinforcing steel, headed studs or shear heads. In addition to these traditional methods of strengthening against punching, steel fibre reinforcement has proved to be an effective and viable alternative. The addition of fi...

متن کامل

Experimental Modal Analysis of Reinforced Concrete Square Slabs

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since ...

متن کامل

Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforceme...

متن کامل

Experimental Strengthening of the Two-way Reinforced Concrete Slabs with High Performance Fiber Reinforced Cement Composites Prefabricated Sheets

Reinforced concrete structures need to be strengthened and retrofitted for various reasons, including errors during design and/or construction, so in most cases strengthening of structural elements is much more economical than rebuilding the structure. Using HPFRCC with tensile stiffening behavior has been developed to strengthen the concrete structures over the recent few years. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Construction and Building Materials

سال: 2022

ISSN: ['1879-0526', '0950-0618']

DOI: https://doi.org/10.1016/j.conbuildmat.2022.126831